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1. Introduction
The structure of a protein complex together with informa-

tion about its affinity and other thermodynamic characteristics
provide a “frozen” view of the complex. This picture ignores
the kinetic nature of protein-protein association and dis-
sociation, which is of major biological and biophysical
interest. This review focuses on recent advances in decipher-
ing the kinetic pathway of protein complex formation, the
nature of the precomplex formed through diffusion (which
we termed the “transient complex”1), the transition state, and
other intermediates (such as the so-called encounter complex)
along the association pathway.

Protein-protein association is at the center of diverse
biological processes ranging from enzyme catalysis/inhibition
to regulation of immune response by cytokines. The associa-
tion rates often play a critical role in such processes, as in
situations where speed is of essence.2 For example, the purple
cone snail and other venomous animals capture prey with
remarkable efficiency and speed by releasing toxins that
rapidly bind to ion channels;3 the green mamba achieves a
similar feat by targeting acetylcholinesterase (AChE), an
enzyme essential for the integrity of neural transmission.4

Bacteria such as Escherichia coli and Bacillus amylolique-
faciens excrete nucleases as weapons against competitors or
predators. Defense of the producing cells from damage to
their own DNA or RNA by such nucleases requires rapid
association with cognate inhibitors.5,6 Indeed, in the last
example rapid association is such a priority that the inhibitor
barstar has a cluster of acidic residues that facilitate associa-
tion with the nuclease barnase, even though the clustered
charges reduce folding stability.7 In the ruminant gut RNase
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A is required for degrading accumulated RNA; potential
toxicity of leaked nuclease is prevented by rapid association
with a ribonuclease inhibitor.8,9

Reorganization of the Actin cytoskeleton provides yet
another illustration of the importance of rapid protein
association. Reorganization is attained through Actin po-
lymerization, which is nucleated by the Arp2/3 complex. The
latter is activated by the Wiskott-Aldrich Syndrome protein
(WASp), which in turn is released from the autoinhibited
state by the Rho GTPase Cdc42.10 As Actin polymerization
is initiated with a nucleation process, the speed of upstream
signaling has a critical impact on the rate of polymer
formation. It is thus not surprising that high association rate
constants have been observed between partners along the
signaling pathway.11,12 The high association rate constant
between Cdc42 and WASp has been found to be essential
for the latter to stimulate Actin polymerization as another

Rho GTPase sharing 70% sequence identity, TC10, with an
identical dissociation rate constant but a 1000-fold lower
association rate constant failed to stimulate Actin polymer-
ization.11 The failure to stimulate Actin polymerization in
patients carrying mutant WAS genes is the root cause of the
Wiskott-Aldrich Syndrome.

Several other compelling arguments can be made for the
biological roles of rapid protein association.13 (a) Fast
association may enhance binding affinity. High affinity can
also be achieved through slow dissociation; however, for
proteins involved in signaling slow dissociation is not an
option since it implies a long-lasting bound state, which
effectively corresponds to a permanent off or on switch. A
good example for this is the binding of Ras to its natural
affector Raf. This protein dissociates within a fraction of a
second but maintains an affinity in the nanomolar range
through fast association. Moreover, the difference between
the natural effector, Raf, and the non-natural effector, Ral,
lies in their rates of association with Ras.14 Therefore, even
if not for a direct reason (such as in stimulation of Actin
polymerization), the affinity requirement alone may call for
fast association. (b) Enzyme-substrate binding is a deter-
mining factor for the overall turnover rate and becomes the
rate-limiting step for catalytically “perfect” enzymes. Substrate-
binding rate constants of such enzymes reach 108 M-1 s-1

and beyond, as found for the ribotoxin restrictocin and RNase
A.15,16 (c) When several proteins compete for the same
receptor or when one protein is faced with alternative
pathways, kinetic control, not thermodynamic control, domi-
nates in many cases; this is especially true when dissociation
is slow. For example, during protein synthesis cognate and
noncognate aminoacyl-tRNA synthetases can potentially
compete for the same tRNA. As an additional example,
consider newly synthesized proteins, which potentially face
aggregation if not isolated by a chaperone. From the point
of view of kinetic control, it is easy to see why rapid binding
of denatured proteins to the chaperonin GroEL has been
observed.17 (d) Differences in binding rate between related
proteins may serve as an additional mechanism for specific-
ity, as can be suggested for Rho GTPases Cdc42 and TC10
and for Ras effectors Raf and Ral.

The examples and arguments presented above suggest that
rapid binding is as important as high affinity in the proper
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functioning of proteins. It is now increasingly recognized
that proteins function in the context of multicomponent
complexes. Manipulating association rate constants of various
components presents unique opportunities for the control of
protein functions. Many interactions between proteins are
also targeted for drug development; in designing such drugs,
both high affinity and rapid binding should be taken into
consideration.

1.1. Overview of Protein Association Kinetics
The observed rate constants of protein association span a

wide range from <103 to >109 M-1 s-1 (Figure 1). In
comprehending these values a basic fact is that for two
proteins to recognize each other their interfaces have to be
oriented with high specificity. A relative rotation of as little
as a few degrees or a relative translation by a few Angstroms
is sufficient to break all specific interactions between the two
proteins.18 The rate of association of a protein complex is
limited by diffusion and geometric constraints of the binding
sites and may be further reduced by subsequent chemical
processes.19

To better understand the kinetics of association of two
proteins (A and B) it is useful to consider the process as
going through an intermediate state (A*B) in which the two
proteins have near-native separations and orientations.1,20-23

We refer to this intermediate state as the transient complex,1,20

noting that it is sometimes also termed the encounter
complex.24 A more detailed discussion of terminology as well
as the specification of the ensemble of configurations making
up the transient complex is provided in section 3. From this
ensemble, conformational rearrangement can lead to the
native complex (C). Accordingly we have the kinetic scheme

A+B {\}
kD

k-D

A*B98
kc

C (1)

While the first step of this scheme depends on relative
diffusion between the protein molecules, the second step is
akin to an intramolecular chemical reaction and can therefore
be described by the classical transition-state theory25 (with
the transition state located at the top of the free-energy barrier
separating A*B from C26) or by Kramers’ theory.27 The latter
theory accounts for barrier recrossing and models motion
along the reaction coordinate as diffusive. The overall rate
constant of association is

ka )
kDkc

k-D + kc
(2)

which is bounded by the diffusion-controlled rate constant,
kD, for reaching the transient complex. This limit is reached
when conformational rearrangement is fast relative to the
dissociation of the transient complex (i.e., kc . k-D), leading
to

ka ≈ kD (3a)

In the opposite limit kc , k-D, conformational rearrangement
or reaction becomes rate limiting and

ka ≈ kckD ⁄ k-D ≡ kR (3b)

Note that kD/k-D is the equilibrium constant for forming the
transient complex.

There is no simple test that would place the association
of a given protein complex into the diffusion-controlled,
reaction-controlled, or mixed regime. However, two general
statements can be made. First, a diffusion-controlled rate
constant falls on the high end of the spectrum of observed
values and a reaction-controlled rate constant falls on the
low end (Figure 1). Second, diffusion-controlled association
typically involves only local conformational changes between
the unbound proteins and the native complex whereas
reaction-controlled association typically involves gross changes
such as loop reorganization or domain movement. These
points will be further amplified below. For later reference
we also introduce here the overall dissociation rate constant,
kd, and the overall association constant, Ka ) ka/kd.

In the transient complex the two protein molecules must
satisfy translational/rotational constraints, which severely
hinder the diffusion-controlled rate constant kD. In the
absence of any biasing force, theoretical estimates put the
resulting “basal” value, kD0, in the range from 105 to 106

M-1 s-1 (see below).28-31 Antibody-protein association rate
constants are typically observed in this narrow range.32-34

The value 105 M-1 s-1 thus may mark the start of the
diffusion-controlled regime.

To go beyond the basal rate constant kD0 and reach
values in the range from 108 to 109 M-1 s-1 as observed
for many protein complexes3-6,8,9,15-17,35,36 (Figure 1),
intermolecular forces must be present. For a force to speed
up a “diffusion-controlled association” it must be present
in the diffusion process that leads to the transient complex.
Indeed, analytical results on model systems show that
when the range of the force is reduced the resulting rate
enhancement decreases drastically.29,37,38 For protein-protein
association the dominant long-range force is provided by
electrostatic interactions.

Rate constants higher than kD0 are indeed usually correlated
with favorable electrostatic interactions, as manifested by
complementary charge distributions on the binding partners,
which are illustrated in Figure 1 for four protein pairs. RNA
and DNA have negative charges from phosphate groups;
proteins targeting them (like barnase, RNase A, and DNase
E9) generally have enriched distributions of basic residues
on the nucleic acid binding sites.39,40 Electrostatically en-
hanced protein-nucleic acid association rates can thus be
anticipated. The basic residues on the nucleic acid binding
sites can also be easily exploited by inhibitors (like barstar,
ribonuclease inhibitor, and Im9): fast inhibition can be
achieved through a concentration of acidic residues on the
latter molecules. Toxins blocking the Shaker potassium

Figure 1. Wide spectrum of association rate constants. The red
vertical line marks the start of the diffusion-controlled regime. The
shaded range marks the absence of long-range forces. (Adapted
with permission from ref 1. Copyright 2008 Wiley Interscience.)
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channel follow a similar strategy.23 Apparently for facilitating
the conduction of the positively charged potassium ion the
mouth of the channel pore is lined with two rings of acidic
residues.41 To complement the resulting negative electrostatic
surface channel toxins have excess basic residues. The
charge-complementarity argument can also be made to
rationalize the excess basic residues on fasciculin 2 (fas),
the snake toxin targeting AChE. AChE uses a negative
electrostatic surface around the entrance to the active-site
gorge for the fast binding of its positively charged substrate.4,42

In other cases, such as in complexes formed by WASp and
Cdc4243 and by interleukin-4 (IL4) and its receptor,44 the
reasons for a particular subunit to take up either positive or
negative charges are not obvious. That they nonetheless show
charge complementarity implicates functional roles of their
fast association.

1.2. Analytical Models of Protein Association
Rate Constants

The first theoretical result for the association rate constant
was obtained by Smoluchowski,45 who found that the
diffusion-controlled rate constant for two uniformly reacting
spheres to form a complex is

kD0 ) 4πDR (4)

where D is the relative translational diffusion constant and
R is the contact distance between the centers of the two
spheres. Debye recognized that the association rate between
oppositely charged molecules can be increased by electro-
static interactions.46 For two uniformly reacting spheres with
a centrosymmetric interaction potential U(r) he found the
diffusion-controlled rate constant to be

kD ) 4πD ⁄∫R

∞
eU(r)⁄kBTr-2 dr (5)

where r is the intersphere distance and kBT is thermal energy.
In the following discussion we will use kD0 to denote the
diffusion-controlled rate constant in the absence of an
interaction potential (also referred to as the basal rate
constant) and use kD to denote the counterpart in the presence
of an interaction potential. The enhancement over the basal
rate constant by an attractive interaction potential in the
Debye model is quite modest. For example, for a Coulombic
interaction potential U(r) ) -Q/r one finds, upon evaluating
the integral in eq 5, kD/4πDR ) (Q/kBTR)/(1 - e-Q/kBTR).
The rate enhancement, kD/4πDR, is 9-fold when the mag-
nitude of the potential is 9kBT at contact. This modest rate
enhancement will be contrasted below with a much greater
enhancement predicted on a more realistic model for protein
association.

For medium-sized proteins, R and D are on the order of
40 Å and 20 Å2 ns-1, respectively. Equation 4 would predict
a basal rate constant of 6 × 109 M-1 s-1. However, it is
important to recognize that the stereospecific association of
two proteins involves significant orientational constraints;
thus, the Smoluchowski formula is of little use. Solc and
Stockmayer tackled the problem of orientational constraints
through a quasi-chemical approximation.47 For two spheres
each with a reactive patch they found the diffusion-controlled
rate constant to be

kD0 )
4πDRF1F2

Λ1Λ2 + [(1-Λ1)
-1(1-Λ2)

-1+
(1-Λ1)

-1(Λ2 -F2)
-1 + (1-Λ2)

-1(Λ1 -F1)
-1]-1

(6)

where F1 and F2 are the surface fractions covered by the
reactive patches. Relative diffusion has to bring their
separation vector to within both reactive patches; therein the
native complex can form instantaneously. Specifying the
reactive patches thus amounts to specifying the transient
complex. An approximate expression, obtained by Berg,48

for Λi (i ) 1 or 2), in the case of a patch spanning polar
angles between 0 and δi is given by

Λi ⁄ Fi )
�i + cot(δi ⁄ 2)

�i + sin(δi ⁄ 2)cos(δi ⁄ 2)
(7)

where �i ) [(1 + DiR2/D)/2]1/2 and Di is the rotational
diffusion constant. For small patches one finds

kD0 ⁄ 4πDR)F1�2 tan(δ2 ⁄ 2)+F2�1 tan(δ1 ⁄ 2) (8)

The basal rate constant obtained by Brownian dynamics
simulations (see section 2.2)28 with simple structural as-
sumptions about the transient complex (which was modeled
by 2-3 correctly formed bonds between the proteins) is
105-106 M-1 s-1, which is 4 orders of magnitude lower than
the unrealistic Smoluchowski result. Such a rate constant is
predicted by eq 8 for reactive patches at sizes of δ1 ≈ δ2 ≈
5° (with R and D at values quoted earlier and Di at 0.02
ns-1). Results similar to eq 8 for the basal rate constant have
been obtained by a number of different methods.49-52

Reactive patches at sizes of ∼5° cover only a fraction of
10-3 of the surface of each sphere. With the intersphere
vector having to lie within both reactive patches before the
native complex can form, the association rate constant is
naı̈vely expected to be lower by a factor of (103)2 ) 106. As
just stated, the reduction factor predicted by eq 8 is 104. The
basal rate constant thus appears to be 100-fold higher than
naı̈ve expectation. Northrup and Erickson28 explained this
apparent paradox by noting, based on Brownian dynamics
simulations, that when two proteins collide there is a high
probability that they will recollide several times before
separating again. Further, due to the separation of time scales
between rotational and translational diffusion they may rotate
significantly between those collisions.

Within the model of two spheres with reactive patches
the influence of an interaction potential on the association
rate constant has also been studied.29,49 The expression for
kD in the presence of a centrosymmetric potential U(r) is

kD )
4πDRe-U(R)⁄kBT[c1(0)c2(0)]2

∑
l,l1,l2)0

∞ [ Fl(r) ⁄ r

-dFl(r) ⁄ dr]r)R
[c1(l1)c2(l2)]

2Cll1l2

(9)

where Fl(r) satisfies

r-2e�U(r) d
dr

r2e-�U(r)dFl(r)

dr
-

[ l1(l1 + 1)D1 + l2(l2 + 1)D2

D
+ l(l+ 1)

r2 ]Fl(r)) 0 (10a)

with the boundary condition Fl(r) f 0 as r f ∞, ci(li) are
given by Legendre polynomials
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ci(li))Pli-1(cos δi)-Pli+1(cos δi) (10b)

and Cll1l2 are given by Wigner 3 - j symbols

Cll1l2
) 2l+ 1

(2l1 + 1)(2l2 + 1)(l1 l2 l
0 0 0 ) (10c)

Analytical results such as eq 9 can provide valuable insight
on the properties of the association rate constant. In
particular, in contrast to the Debye model in which rate
enhancement by an attractive interaction potential is quite
modest, the rate enhancement in the more realistic patch
model can be substantial. For reactive patches with sizes of
δ1 ≈ δ2 ≈ 5°, the rate enhancement is ∼5000-fold for a
potential with a magnitude of 9kBT at contact.29 More
importantly, it is found that when U(r) is long ranged and
δ1 and δ2 f 0, the dependence of kD on the interaction
potentialdisappearsexcept in theBoltzmannfactore-U(R)/kBT.29,49

Therefore, the effect of the interaction potential can be simply
captured by the Boltzmann factor. In section 2.2 we will
return to this important result.

In the following sections we give a detailed account of
theoretical and experimental studies of protein-protein
association kinetics. In section 2 we outline the main
experimental and theoretical methods for studying association
kinetics. Section 3 presents experimental and theoretical
analyses of the transient complex as well as the transition
state for the final step in the association pathway. Section 4
continues with the important subject of electrostatic rate
enhancement. In section 5 we discuss protein-protein
association in the membrane environment, a field with
growing interest. The subject of section 6 is the effect of
crowding on association. Some final conclusions are drawn
in section 7.

2. Methods for Studying Protein-Protein
Association Kinetics

The association kinetics between proteins has been studied
vigorously using both experimental and theoretical methods.
There are some basic differences in studying binding of
proteins and their folding. In folding the unfolded state is
not well defined while the unbound state of proteins has a
well-defined structure. This is not true in all cases as many
protein-interaction domains were found in recent years to
be unstructured, and thus, binding and folding in those cases
are coupled.53-56 However, here we review mostly the
binding of structured proteins. A second main difference
between binding and folding is that folding is a first-order
process, where overall translational and rotational diffusion
plays only a limited role. Conversely, as discussed in section
1, for binding overall translational and rotational diffusion
play a major role in dictating the rate constant of the reaction.
The existence of well-defined unbound structures simplifies
the theoretical study of binding. For heterocomplexes this
also simplifies the experimental study as one has a clear
starting point for the reaction, the mixture of the separate
components of the complex, and the possibility to follow in
real time complex formation. In this review we focus on the
experimental and theoretical work done to learn more about
association between single globular proteins to form
complexes.

2.1. Experimental Methods
Most of the experimental work reviewed here was done

with the proteins being in free solution using methods such
as stopped-flow spectrometry and NMR spectroscopy. This
excludes the results of many measurements done using
surface plasmon resonance (SPR) with one of the proteins
attached to a surface and the other one in solution.57 Direct
comparisons of association rate constants for a number of
protein-protein complexes showed that SPR data may
provide different ka values from those obtained in solution.58,59

These differences may be attributed to mass transport,
protein-immobilization effects, surface charges, crowding,
etc.60,61 As these factors introduce additional complexity to
the analysis of protein association kinetics that is not directly
related to the association reaction, we review here only
solution data.

2.2. Computer Simulations and Modeling
One can model protein-protein association by simulat-

ing the translational and rotational Brownian motion of
the subunits. In these Brownian dynamics simulations
conformational fluctuations within the subunits are ne-
glected, and hence, time scales far beyond those accessible
to molecular dynamics simulations can be explored.
Brownian dynamics simulations make it possible to
calculate the diffusion-controlled rate constant kD for
protein shapes and interaction potentials beyond the scope
of analytical theories. This approach has been used by
many groups.24,28,49,62-71 In such a calculation one must
specify a precise set of conditions, which when satisfied
signifies formation of the native complex. This set of
conditions, typically implemented as an absorbing bound-
ary in Brownian dynamics simulations, amounts to defin-
ing the transient complex. Rather than being guided by
any theoretical considerations, the location of the absorb-
ing boundary is usually proposed in an ad hoc way and
often adjusted for best agreement with experiment. For
example, in their Brownian dynamics simulations of
barnase-barstar association Gabdoulline and Wade24

tested three different specifications of an absorbing boundary
against experimental data. Two of these were based on atom
distances, and the third was based on electrostatic interaction
energy; each specification had an adjustable parameter.

We will give a more detailed account on the specification
of the transient complex in section 3.1. Here we address the
effect of interaction potential, particularly one arising from
electrostatic interactions between two associating proteins.
In Brownian dynamics simulations the effect of electrostatic
interactions can be modeled by accounting for their influence
on the translational and rotational Brownian motion of the
proteins. In principle, the electrostatic force and torque on
theproteinscanbecalculatedbysolvingthePoisson-Boltzmann
equation

∇ ε(r) ∇ Φ(r))-4π[F(r)+M(r) ∑
i:ions

ciqie
-qiΦ(r)⁄kBT]

(11)

where ε is the dielectric constant, Φ is the electrostatic
potential, F is the charge density inside the proteins, M is a
function with a value of 1 in all regions where mobile ions
in the solvent are accessible and 0 elsewhere, and qi and ci

are the charges and bulk concentrations of mobile ions,
respectively. The solution of the Poisson-Boltzmann equa-
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tion is simplified by linearization leading to

∇ ε(r) ∇ Φ(r))-4πF(r)+M(r)εsκ
2Φ(r) (12)

where εs is the dielectric constant of the solvent and κ )
(8πe2I/εskBT)1/2 is the Debye-Hückel screening parameter
with I ) ∑i: ionsciqi

2 /2e2, the ionic strength. However, even
after linearization, solving the Poisson-Boltzmann equation
on the fly during a Brownian dynamics simulation is
prohibitively expensive. One thus has had to rely on
approximations such as treating one of the proteins as a set
of test charges62 (which leads to significant errors from
neglecting the low-dielectric region of the protein interior49)
or the more elaborate effective-charge model.72 Unfortu-
nately, the approximations are worst when the proteins are
in close proximity, precisely where electrostatic interactions
are expected to have the strongest influence on kD.

An algorithm is needed to obtain kD from the simulations.
A widely used algorithm was developed by McCammon and
co-workers.73 According to this algorithm one protein is
translationally immobilized at the origin and trajectories of
the other protein are initiated uniformly on a spherical surface
(at a radial distance r ) b) (see Figure 2a). This “b” surface
should be chosen far away from the immobilized protein such
that the electrostatic interaction potential is centrosymmetric.
If rotational motion is allowed, then the starting orientations
of the two proteins are random. The diffusion-controlled rate
constant is given by

kD ) 4πDbf∞ (13)

where f∞ is the fraction of trajectories that, instead of escaping
to infinity, reach the absorbing boundary specifying the
conditions for formation of the native complex. To find f∞,
an outer absorbing boundary at r ) q > b, called the q

surface, is introduced. The trajectories are terminated when
either the absorbing boundary for complex formation or the
q surface is reached. From the fraction, f, of trajectories
terminated on the inner absorbing boundary one finds

f∞ )
f

1- (1- f)kD(b) ⁄ kD(q)
(14)

where kD(b) and kD(q) are given by eq 5 with R replaced by
b and q, respectively. It has been shown that eq 14 is strictly
valid only when the q surface is far away from the
immobilized protein such that the equilibrium distribution
of the mobile protein becomes isotropic.74

An alternative algorithm75,76 has also been developed in
which the absorbing boundary is extended into a “reaction
region” with a finite volume VRR (Figure 2b).18,77 A protein
pair that has reached the reaction region has a finite rate, γ,
to form the native complex. In this treatment of protein
association the reaction rate γ models the conformational
rearrangement that brings the protein pair from the transient
complex (specified by the reaction region) into the native
complex, that is, kc ) γ. The equilibrium constant kD/k-D is
given by VRRe-〈U〉*/kBT, where 〈U〉* is the average interaction
energy within the transient complex. By starting Brownian
trajectories from within the reaction region and obtaining
the surviving fraction, S, of the trajectories, the association
rate constant is obtained as ka ) γSVRRe-〈U〉*/kBT. Substituting
the various results into eq 2, one finds that the diffusion-
controlled association rate constant is given by

kD ) γVRRe-〈U〉*⁄kBTS ⁄ (1- S) (15)

While the surviving fraction S depends on the rate γ and on
how much the absorbing boundary is extended to form the
reaction region, the result for kD given by eq 15 is only
determined by the absorbing boundary and the interaction
energy. We also note that the reaction-controlled association
rate constant (eq 3b) is

kR ) kckD ⁄ k-D ) γVRRe-〈U〉*⁄kBT (16)

in the present treatment.
In a Brownian dynamics study of protein-protein associa-

tion under the influence of electrostatic interactions it was
discovered that the survival fraction S is insensitive to the
presence of the electrostatic interaction energy.49 Then one
can write eq 15 as

kD ) kD0e
-〈U〉*⁄kBT (17)

with kD0 as the basal rate constant given by

kD0 ) γVRRS0 ⁄ (1- S0) (18)

where S0 is the survival fraction without any biasing force.
Note that a dependence on interaction energy as simple as
that given by eq 17 is expected for the reaction-controlled
rate constant (see eq 16), but totally unexpected for the
diffusion-controlled rate constant. Later an analytical deriva-
tion of eq 17 was presented,78 which confirmed the two
requirements for the validity of eq 17 suggested in the
original work.49 These requirements are that the association
is stereospecific and the interaction energy is long ranged.
Fortuitously (and fortunately!) these conditions are fulfilled
by protein-protein association under the influence of
electrostatic interactions. The accuracy of eq 17 has been
demonstrated against results from Brownian dynamics
simulations of protein-ligand binding20,79,80 and against

Figure 2. Two algorithms for calculating the diffusion-controlled
association rate from Brownian dynamics simulations. (a) Algorithm
of Northrup et al.73 (b) Algorithm of Zhou.75 In either algorithm
Brownian trajectories can be terminated by two triggers. In a the
triggers are absorption by either the inner absorbing boundary or
the q surface; in b the triggers are either reaction in the reaction
region or when the lifetime of the trajectory exceeds a cutoff.
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analytical results given by eq 9 for model systems.29 This
equation resolves one of the two main obstacles to reliable
prediction of protein association rate constants by making it
possible to rigorously treat electrostatic interactions. The
effect of electrostatic interactions is captured by the Boltz-
mann factor e-〈U〉*/kBT, which can be obtained by averaging
over a relatively small number of representative configura-
tions in the transient complex. The basal rate constant kD0

still needs to be obtained through force-free Brownian
dynamics simulations, but these simulations are inexpensive.

At first glance eq 17 looks like the transition-state theory
of the Eyring type.25 There is no relation between the two.
As already emphasized, eq 17 is for a diffusion-controlled
rate constant, but Eyring’s theory is for energy barrier-
crossing processes that are activation controlled. Kramers27

has shown that Eyring’s theory is a very poor approximation
when barrier crossing becomes diffusion controlled. How-
ever, there is no link between eq 17 and Kramers’ theory
for diffusion-controlled barrier crossing either. In particular,
the average interaction energy of the transient complex, 〈U〉*,
which superficially resembles the energy barrier in Eyring’s
and Kramers’ theories, is typically negative (leading to rate
enhancement) instead of positive. Unlike the processes
studied by Eyring and Kramers, where the energy barrier is
what hinders the rate, the diffusion-controlled rate of protein
association is hindered by the translational/rotational con-
straints of the transient complex. Moreover, eq 17 does not
require a reaction coordinate like the theories of Eyring and
Kramers. In fact, as will be discussed next, the specification
of the transient complex involves at least six degrees of
freedom: three for translation and three for rotation.

3. Intermediates along the Association Pathway
Throughout this review we use the word “intermediate”

as a generic term for a set of configurations in which there
is a degree of correlation in translation and rotation between
the associating proteins; it does not necessarily correspond
to a local energy minimum or a species trapped in kinetic
experiments. We refer to the latter as a kinetic intermediate.
As discussed in section 1.1, the association process starts
with formation of the transient complex (sometimes termed
the encounter complex, see section 3.1 below). The transient
complex is close to the native complex in relative separation
and relative orientation between the subunits but still misses
a majority of the short-range interactions characterizing the
native complex. Formation of these short-range interactions
requires passage through another fleeting structure, the
transition state for conformational rearrangement.26,81 How
can structural information be obtained on these intermediates?

Structural studies are routinely done to elucidate the
transition state and kinetic intermediates of protein folding
or enzyme catalysis. A range of experimental tools has been
developed for this task. NMR is a powerful tool to pin down
the residual structures of the unfolded state as well as capture
transient folding intermediates.82 Φ-Value analysis reveals
whether specific interactions are formed already during a
kinetic intermediate or the transition state of the reaction.56,83,84

Time-resolved spectroscopy and single-molecule spectros-
copy are powerful tools which are frequently applied to
investigate kinetic intermediates and transition states in
folding.85-88 While these experimental tools provide only a
partial view, they are extremely valuable for molecular

dynamics simulations and other computational studies as they
provide experimental reference points to benchmark simula-
tions.89-91

In comparison to studies on protein folding, structural
studies on intermediates along the pathway of protein-protein
association are much less common. This may be partly
attributed to the technical difficulties stemming from the low
population of the binding intermediates and the ill-defined
nature of the transition state for binding. Still, the develop-
ment of protein-engineering tools, NMR, and time-resolved
optical spectroscopy resulted in a number of interesting
experimental studies shedding light on the mechanisms of
protein-protein association. Valuable guidance has also been
provided by theory. In the following we focus on studies
characterizing the transient complex and the transition state
of association.

3.1. Transient Complex
In theoretical predictions of association rate constants one

must specify the transient complex. In different contexts the
transient complex has appeared as reactive patch, absorbing
boundary, reaction region, and encounter complex. The ad
hoc way by which the transient complex is specified in
Brownian dynamics studies is pointed out in section 2.2. The
situation was no better when eq 17 was first used to predict
association rate constants. In one early such study on
barnase-barstar association77 the transient-complex ensemble
was specified by adjusting the ranges of relative translation
and rotation between the two proteins to match the experi-
mental data at high ionic strength. Miyashita et al.92 directly
used experimental data for the association of cytochrome
c2 with the bacterial reaction center to locate the transient-
complex ensemble in the 6-dimensional translation and
rotation space. The correlation coefficient between calculated
changes in the electrostatic interaction energy by mutations
and the experimental counterpart

∆∆G‡-U ≡-kBT ln(ka
mut ⁄ ka

wt) (19)

was used as an effective energy in a Monte Carlo simulation.
Schreiber and co-workers93,94 further simplified eq 17 by
calculating 〈U〉* from an empirical function simply on the
native complex, thus avoiding the specification of the
transient complex; the empirical function was parametrized
on experimental data. Applications of that approach are
presented in section 4.2.

In order to predict association rate constants from theory
alone, the transient-complex ensemble has to be specified
without reference to experiment. A solution to this chal-
lenging problem was proposed in a recent paper18 based on
analyzing the interaction energy landscape of associating
proteins.

In a complete theory the overall association rate constant
ka should not be sensitive to where the transient complex is
placed. If it is placed far away from the native complex,
then kD will be large but kc will be small. Conversely, if it
is placed very close to the native complex, then kD will be
reduced but kc will become very large. Either way, eq 2 is
expected to give nearly the same result for ka (as explicitly
shown for a model system95). However, given the consider-
able difficulty and uncertainty in the calculation of kc it is
highly desirable to use kD as a close approximation for ka.
Then there is an optimal location for placing the transient
complex.22 If it is placed too far from the native complex,
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then the resulting kD would not be a useful approximation
for ka. On the other hand, placing the transient complex too
close to the native complex would mean that short-range
interactions and conformational rearrangement have to be
dealt with in calculating kD. The native complex sits in a
deep well in the interaction energy landscape.18 The optimal
placement for the transient-complex ensemble is at the outer
boundary of the native-complex energy well (Figure 3a).18,22

The algorithm for identifying the transient complex was
based on the following observation: inside the native-
complex energy well translation and rotation are restricted,
but once outside, the proteins gain significant translational/
rotational freedom.18 Thus, the outer boundary of the native-
complex energy well coincides with the onset of translational/
rotational freedom. To simplify the calculations required for
determining the transient complex, the short-range interaction
energy stabilizing the native complex was modeled by the
number of contacts, Nc, formed between the protein partners.
Translational/rotational freedom was measured by σ�(Nc), the
standard deviation of the rotation angle � in configurations
with a given contact level Nc. A sharp increase in σ� with
decreasing Nc marks the onset of translational and rotational

freedom and hence the location of the transition complex
(Figure 3b). As illustrated in Figure 3c for the barnase-barstar
pair, the resulting model for the transient complex is a
compact ensemble of configurations which marks the onset
of a sharp increase in translational and rotational freedom
as the protein partners move out of the native-complex energy
well. In the ensemble of transient-complex configurations
of the barnase-barstar pair the displacement vector r is
mostly confined in a 4 × 4 × 1 Å3 volume, corresponding
to distances of 4.5 ( 0.5 Å between the protein surfaces
(allowing for at least one layer of solvent). Within this
translational volume the relative orientations of the two
proteins are also severely restricted with the rotation angle
� mostly confined in the 0°-10° range.

Since kD is used as the prediction for ka, eq 17 can be
rewritten as an equation for ka

ka ) ka0e
-〈Uel〉*⁄kBT (20)

where ka0 is the rate constant for reaching the transient
complex in the absence of any biasing force and can be
obtained by Brownian dynamics simulations, and the interac-
tion energy is now denoted with a subscript “el” to signify

Figure 3. Location of the transient complex within the interaction energy landscape. (a) The energy landscape of protein-protein association.
Translation (r) and rotation (e, �) coordinates lie in the horizontal plane. The transient-complex ensemble is indicated by a green ring. The
smooth energy landscape results from keeping the two proteins in their native internal conformations. (b) Identification of the transient
complex, consisting of configurations with the contact level Nc*, where σ� is poised for a sharp increase with decreasing Nc. (c) Translational
volume of the transient complex, which is the projection of the hypersurface Nc ) Nc* into the 3 dimensions of translation, for the
barnase-barstar pair. A cluster of red dots represent the locations of the displacement vector r (yellow arrow). (Parts a and b were adapted
with permission from ref 1. Copyright 2008 Wiley Interscience.)
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that only electrostatic interactions are to be included. The
neglect of short-ranged nonelectrostatic effects from the
Boltzmann factor is based on two considerations. First, as
Figure 3c shows, the transient-complex configurations are
separated by at least one layer of solvent; therefore, short-
ranged forces such as hydrophobic and van der Waals
interactions are relatively weak in the diffusion process,
leading to the transient complex. Second, short-range interac-
tions, even when present within the transient complex,
contribute much less to rate enhancement (i.e., ka/ka0)
compared to long-range interactions. However, short-range
interactions are essential for determining the location and
size of the transient-complex ensemble in configurational
space, which in turn affect the magnitude of ka0. A transient-
complex ensemble that is less restricted in translation and
rotation will lead to a higher ka0. Variation of the restriction
in translation and rotation within the transient complex with
solvent conditions or among different protein complexes can
be viewed as a configurational entropy effect. The basal rate
constant ka0 captures all the contributions of short-range
interactions and configurational entropy.

The structural model for the transient-complex ensemble
presented above along with eq 20 constitutes the transient-
complex theory for predicting protein-protein association
rate constants. With this theory the two main obstacles faced
by the traditional approach of Brownian dynamics simula-
tions, the necessity for approximate treatment of electrostatic
interactions and the ad hoc specification of the transient
complex, are both resolved. Applications of this theory are
presented in section 4.3.

3.2. Other Intermediates
The term “encounter complex” has frequently been used

in describing the pathway of protein-protein association. It
appears that this term is assigned different meanings in
different contexts. For example, in calculating association
rate constants by Brownian dynamics simulations, Gab-
doulline and Wade used this term to refer to “the end-point
of diffusional association”,24,96 which would be similar to
what we have defined as the transient complex. However,
these same authors later also used encounter complex to refer
to low free-energy regions in configurational space.70 In the
paramagnetic NMR experiments described next, encounter
complex refers to a minor, dynamic state that is in equilib-
rium with a dominant, stereospecific complex.

Using the paramagnetic relaxation enhancement (PRE)
NMR technique on the electron-transfer pair of yeast
cytochrome c peroxidase (CcP) and iso-1-cytochrome c (Cc)
Volkov et al.97 determined the structure of the dominant,
well-defined complex and delineated the configurational
space of the minor, dynamic state. The latter, as just noted,
was referred to as encounter complex. The dominant complex
is very similar to the X-ray structure of the pair and occupied
for >70% of the time. In the encounter complex, Cc occupies
a region around the position in the dominant complex; the
negative charges of CcP bordering this region suggest “that
electrostatic attraction plays a dominant role in determining
the nature of the encounter complex”. However, the data also
seem to indicate that the encounter complex contains
configurations in which Cc has its “back” side facing CcP.

Tang et al. carried out a similar study for the association
between the phosphocarrier protein, Hpr, and three proteins
in the bacterial phosphotransferase system.98 They found a
rather diffuse encounter complex that qualitatively correlates

with the electrostatic surface potentials on the interacting
proteins. These experiments were performed in the absence
of salt, in which case nonspecific electrostatic attraction of
these highly charged proteins is strong over a long range.6

In a follow-up paper99 Tang et al. showed that the nonspecific
part of the encounter complex is reduced to a large extent
by adding salt, while more specific configurations (located
near the region of the native complex) were less affected.
This study seems to suggest that not all regions of the
encounter complex lead to productive association; it is the
region which does lead to productive association that we
specifically refer to as the transient complex.

Spaar et al.70 developed a method for mapping the
encounter complex along the association path from BD
simulations. Applying this method to the barnase-barstar
interaction they suggest two minima along the pathway, one
leading (according to an analysis of successful trajectories)
to association, while the other does not. Still, they suggest
that this second region may be helpful to steer barstar into
the region of the transient complex. In a yet unpublished
study combining simulation and experiment Spaar et al.
aimed to directly evaluate the importance of nonspecific
encounter regions to association. Using the method developed
by Spaar et al.70 on TEM1-BLIP association, the BD
simulations identified two main regions with low interaction
energies for the wild-type complex; however, most trajec-
tories started at these regions did not lead to productive
binding. It was found that only mutations designed to
increase the size and energy of the encounter region near
the binding interface had a major effect on the measured
association rate constant. Conversely, mutations increasing
or decreasing the occupancy and energy of other intermedi-
ates had no effect on the association rate constant. These
results indicate that not only the occupancy or energy of the
encounter regions but also their location are important in
determining their effect on the association rate constant.
Thus, some encounter regions are fruitful while others are
futile. This conclusion was in fact anticipated when the
encounter region that does lead to productive association was
singled out to define the transient complex (see above
discussion illustrated by Figure 3a).1

In some cases, kinetic intermediates in binding have been
observed. One such case is the interaction between colicin
endonucleases and their cognate and noncognate immuno-
proteins.100 Stopped-flow spectrofluorimetry shows that bind-
ing of both Im9 and Im2 to E9 result in a rapid fluorescence
quenching step (pre-equilibrium) with a concentration-
dependent rate of formation followed by a second, concen-
tration-independent slow rate (on a time scale of seconds).
The data are best explained by a mechanism where cognate
and noncognate complexes alike form a “dynamic encounter
complex”. Thereafter the cognate pair transitions to a high-
affinity, stereospecific complex, whereas the noncognate pair
remains dynamic without achieving high affinity.

A somewhat different mechanism involving a pre-equi-
librium complex followed by a reorganization step was
suggested for cystatin A binding papain.101,102 The biphasic
behavior of cystatin A/papain interaction was observed by
following independently the inhibition of the catalytic activity
of papain (where a linear dependence of kobs on protein
concentration was observed), while the spectroscopic probe
(which monitors the accumulation of the native complex)
showed a hyperbolic dependence of kobs on protein concen-
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tration. This example demonstrates that characterization of
the association behavior may depend on the probe used to
monitor it.

3.3. Mapping Intermediates by Mutations
3.3.1. Φ-Value Analysis

Φ-Value analysis was successfully applied to map the
transition state for protein folding and became the golden
standard for many simulations.103 It has been demonstrated
that this analysis can be used also for studying the rate-
determining state (denoted by ‡) for protein-protein
association.14,56,104-106 The basic formulation for such analysis
for binding is given by

Φa )∆∆G‡-U ⁄ ∆∆GC-U (21)

where ∆∆G‡-U is defined by eq 19 and ∆∆GC-U is
analogously defined but with the association rate constant
ka replaced by the association constant Ka. Mutations that
induce a similar effect on the rate-determining state (‡) and
the free energy of binding will have a Φ value of 1, while
mutations that have no effect on the rate-determining state
(‡) but change the association constant will have a Φ value
of zero. The interpretation of this form of Φ-value analysis
is particularly transparent when conformational rearrange-
ment is rate limiting (cf. eq 3b). In this case ∆∆G‡-U

represents the mutational effect on the free energy for
forming the transition state between the transient complex
and the native complex, and the Φ-value analysis thus reports
on the transition state. If, on the other hand, conformational
rearrangement is fast (i.e., kc . k-D) then the analysis reports
on formation of the transient complex.

Figure 4 shows a Φ-value analysis for a large number of

‘hotspot’ mutations (those with ∆∆GC-U > 2 kcal/mol in
magnitude) collected from TEM1-BLIP, barnase-barstar,
and Ras-Ral binding.6,14,93,107 The mutations were divided
into three groups: one consisting of noncharged residues, the
second consisting of charged residues located within the
binding interface, and the third consisting of charged residues
located outside the binding interface. The reason we show
only ‘hotspot’ residues is to avoid erroneous Φ values as
the experimental error for ∆∆G measurements is on the order
of 0.3 kcal/mol. As only very few residues located outside
the binding interface pass this criteria, we included in this
group also multiple mutations that were designed to specif-
ically increase the association constant.14,93 The data clearly
demonstrate that noncharged mutations always have Φ values
close to zero, while charged residues located outside the
physical binding site have Φ values close to one. Charged
residues located within the binding site have mixed values.
A simple explanation of these Φ values is that they report
on the transient complexes of the three protein pairs. As noted
in the discussion below eq 20, the transient complex is
predominantly stabilized by long-range electrostatic interac-
tions with nonpolar interactions playing a minor role. A
striking result of the Φ-value analysis is that hydrophobic
residues appear to play only a minor role in formation of
the transient complex. As most mutations were made to Ala,
which retains a hydrophobic surface, one cannot rule out
the possibility that nonspecific hydrophobic interactions are
formed at the transient complex also for the mutant, reducing
the Φ value. However, this contribution should be very
limited as mutations to Ala create cavities on the surface
that are not fully filled up by the incoming protein.

A hallmark of a partially reaction-limited reaction (i.e.,
not purely diffusion controlled) is a nonlinear relation
between the rate of association and the concentrations of
reactants. This has been observed for enzyme-substrate
interactions but rarely for protein-protein association.
However, in the case of the association between RalGDS-
RBD and Ras this nonlinearity could be experimentally
demonstrated, presenting direct evidence for the transient
complex as a kinetic intermediate for association.14 The
nonlinearity was observed despite a high ka value (107 M-1

s-1) and a putative basal rate of 6 × 105 M-1 s-1, which
should in principle place this association in the diffusion-
controlled regime (see section 1.1). Using the program PARE
(see section 4.2.1),93 mutations of charged residues located
at the periphery of the binding interface were designed, which
specifically increased ka and did not affect kd. Stopped-flow
measurements showed that the increase in ka of a +7 mutant
was a result of an increased rate of formation of the transient
complex, while the rate of conversion to the native complex
was unchanged at a value of ∼400 s-1.14 From these data Φ
values of 1.0 and 0.9 for the transient complex and transition
state, respectively, were calculated. This demonstrates that
favorable electrostatic interactions introduced by mutation
stabilize the transient complex and transition state to the same
extent as they stabilize the native complex. This study also
points to the difficulty in assigning a particular association
process as diffusion limited or reaction limited. At low
protein concentrations the overall association rate may appear
to be diffusion limited, but at high protein concentrations it
may appear to be reaction limited.

The +7 RalGDS-RBD variant (obtained by electrostatic
design) binds Ras with an association constant similar to that
measured for the native effector, Raf. Interestingly, the

Figure 4. Φ-Value analysis of the transient complex/transition state
for association determined for ‘hotspot’ mutations (affecting the
binding affinity by >2 kcal/mol) collected from TEM1-BLIP,
barnase-barstar, and Ras-Ral association.6,14,93 Φ values close to
1 suggest that the involved residues have similar interactions in
the transient complex/transition state and in the native complex,
while values close to 0 indicate the residues do not form any
interprotein contacts in the transient complex/transition state.
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electrostatic potential map of the RalGDS-RBD variant is
also similar to that of Raf (Figure 5a) despite the very
different sequences of the two effectors (<15% homology).14

The initial aim of this project was to optimize through
mutation the electrostatic interactions between RalGDS-RBD
and Ras. The similarity of the electrostatic potential maps
of the +7 Ral mutant and Raf suggests that the natural
complex between Ras and Raf is optimized by natural
selection for fast binding.

pKa shifts during the association process can also provide
structural information about the transient complex.108,109 The
pKa of His102 in unbound barnase was measured to be 6.3,
while in the native complex a pKa of <5 was measured. The
pH dependence of ka showed a pKa value similar to that in
the unbound protein; therefore, the shift in pKa upon binding
barstar occurs after the transient complex. The X-ray structure
of the native complex and electrostatic calculations110 indicate
that the shift in pKa is attributable to the burial of His102 in
the interface with barstar and interactions with surrounding
barstar residues; the pH dependence of ka suggests that the
burial and interactions are not fully formed within the
transient complex. A similar behavior was observed for the
association of R67 DHFR with a pKa of 6.6 that was assigned
to H62 but a dissociation reaction with a pKa of under 5.5
with the pKa shift being attributed to specific short-range
interactions that are not formed within the transient complex/
transition state for association.111 These studies provide a
clear indication that short-range interactions are mostly
formed late along the association pathway.

3.3.2. Double-Mutant Cycle Analysis

Double-mutant cycles measure the coupling energy be-
tween a pair of residues from the difference in binding free
energy between a double mutant and the two single muta-
tions. For binding, the coupling energy defined by108,112-114

∆∆Gint
‡-U )∆∆GXfA,YfA

‡-U -∆∆GXfA
‡-U -∆∆GYfA

‡-U

(22)

provides a measure of the interaction between two residues,
X and Y, in the transient complex or the transition state
(depending on which dictates the rate-limiting step). Like
Φ-value analysis, this technique was also first applied
successfully to protein-folding studies.112,113,115,116

From a large number of double-mutant cycles studied
concerning the association rate constant of barnase and
barstar significant coupling energies were found only between
charged residues separated by <10 Å from one another in
the native complex.6 None of the noncharged residues had a
significant ∆∆Gint

q-U value with any other residue. A similar
experiment was done on the interaction between cytochrome
C2 and the bacterial reaction center, but only between charged
residues. ∆∆Gint

q-U values, as calculated from the measured
electron-transfer rate constant, which is closely related to
ka,92 again showed that significant interactions exist in the
transient complex/transition state only between residues
which are <10 Å away from each other in the native
complex.117 A similar result was obtained also for association
of TEM1-�-lactamase and its protein inhibitor BLIP.118

Repeating the double-mutant cycles at up to 1 M salt (which
masks the effects of charge-charge interactions) showed that

Figure 5. (a) Electrostatic potential maps of Ras, Raf-RBD, and Ral-RBD. The Ral + 7 mutant contains the mutations M26K/D47K/
E54K/D90K, which were predicted by the program PARE to significantly increase the rate constant of association of Ral-RBD to Ras.
These four mutations are located outside the Ras-binding site on Ral-RBD. The figure was drawn using the program GRASP with the
contours drawn at 2kBT/e (blue for positive and red for negative). (b) Plot of experimental values of the association rate constants for
mutants of Ral-RBD to Ras vs values calculated using PARE. (Adapted with permission from ref 14. Copyright 2004 The National
Academy of Sciences of the United States of America.)
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for barnase-barstar and the complex between P. laminosum
Cyt fandplastocyaninsomebutnotallpairwisecharge-charge
interactions were maintained, suggesting that the structural
specificity of the transient complex/transition state is pre-
served even at high salt but its size may shrink.119,120

The experimental mutant and double-mutant cycle data
measured on the association rate constants were further used
to model the structures of the transient complex/transition
state. In the study of Harel et al. the transient complex/
transition state was modeled from the experimental ∆∆Gint

q-U

values by searching for those interprotein orientations that
best account for the experimental ∆∆G‡

int values (Figure 6).
Similarly, Miyashita92 related the experimental ka values of
mutant proteins to differences in the calculated electrostatic
energies for a wide range of cytochrome C2-reaction center
(Cyt-RC) configurations. Both studies gave a very similar
description of the transient complex/transition state. In both
cases, the transient complex/transition state was stabilized
by electrostatic interactions with the ensemble of configura-
tions spread out around the native complex, but in neither
case were short-range interactions formed, suggesting a
solvated transient complex/transition state. The average
structure of the transient complex/transition state was not
necessarily located exactly at the center of the binding
interface but could be shifted toward one side of the interface.
This was observed for both the Cyt-RC and the electrostati-
callyoptimizedTEM1-BLIPpairs,whileforthebarnase-barster
pair the average structure of the transient complex/transition
state overlapped the native complex.92,94,118 These charac-
teristics bear striking resemblance to the compact structural
model of the transient complex derived from theory (section
3.1). They suggest a certain pathway for association (down
an energy funnel), which would help in speeding up the
association.18 Contrary to these results, no indication for a
transient complex with specific structures was found for the
association between wild-type TEM1 and BLIP or between
IFNR2 and IFNAR2 (Figure 6). Therefore, a diffusive
transient complex/transition state was suggested for these
protein pairs. What distinguishes a diffusive transient
complex from a compact one is the absence of defined
interprotein orientations. As was clearly shown for the
TEM1-BLIP complex, mutations introduced through ratio-

nal design can change the transient complex/transition state
from diffusive to compact and vice versa.118

All the evidence described above suggest the existence of
a transient complex/transition state along the association
pathway. The main points presented are (1) the binding of
Ras to either Ral or Raf is biphasic with the first phase being
diffusion limited and the second phase reaction limited, (2)
increasing the electrostatic complementarity between Ras and
Ral specifically affects the rate of the first phase and does
not affect the second phase of association, (3) increasing
electrostatic complementarity affects only the association but
not dissociation rate constant, (4) double-mutant cycle
experiments as well as Φ-value analyses clearly show that
only charged residue pairs form interactions in the transient
complex, while short-range interactions are largely unformed
in the transient complex. Further formation of such short-
range interactions, which are important for stabilizing the
native complex, may encounter a transition state. In the case
of a compact transient complex the transient complex already
has interprotein orientations similar to those in the native
complex. The transition state will at least inherit such an
orientational similarity. Therefore, in terms of gross structure,
the transient complex and transition state seem to be close.

4. Probing Electrostatic Enhancement of
Association Rates

As discussed in previous sections, electrostatic interactions
have long been recognized as the dominant factor used by
Nature in order to enhance protein association beyond the
basal rates dictated by diffusion.13,49,121 In this section we
discuss experimental and theoretical methods to probe and
analyze the effect of electrostatic attraction on association
kinetics as well as protein engineering studies which enable
us to modify and control this effect. The preceding sections
have already presented a glimpse into some of these issues.

4.1. Ionic Strength Dependences of ka and kd

The magnitude of the electrostatic attraction between two
proteins can be modulated most simply by changing the ionic
strength of the solution. It has been recognized that when
the association between two proteins is diffusion controlled
modulation of the electrostatic attraction leads to a universal
phenomenon related to the association and dissociation rate
constants ka and kd, which show very disparate dependences
on ionic strength.22,122 The association rate constant decreases
significantly with increasing ionic strength, whereas the
dissociation rate constant is only modestly affected by ionic
strength. The disparate ionic strength effects have been
observed on a number of the protein-protein complexes
discussed above.4,5,11,35,109 Many other proteins conform to
the same behavior.123-133

The compact structural model of the transient complex
derived from theory, presented in section 3.1, provides a nice
explanation for the disparate effects of ionic strength on
association and dissociation rate constants when association
is diffusion controlled.22,122 As the transient complex lies at
the outer boundary of the interaction energy well and hence
is close to the native complex, ionic strength is expected to
screen electrostatic interactions in the two types of complexes
to nearly the same extent. Hence, the association constant
and association rate constant are expected to have nearly the
same dependence on ionic strength and the dissociation rate
would be little affected by ionic strength.

Figure 6. Mapping the transient complex/transition state for
protein-protein association for the TEM1-BLIP and barnase-barstar
complexes using double-mutant cycle data as constraints. Each point
represents the center of mass of one of the 2220 configurations of
TEM1 or barnase perturbed from the native complex (the mobile
proteins in the simulations). BLIP and barstar are the fixed proteins
and are represented as ribbon. The point in the middle of each cap
represents the X-ray structure of the native complex. The different
colors represent configurations selected by different filtering cutoffs;
colder colors designate a configuration that passes a more stringent
cutoff (thus, has a higher probability of occupancy in the transient
complex/transition state). The TEM1-BLIP complex was electro-
statically optimized using the program PARE by introducing
mutations located outside the binding interface.
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The relation between ionic strength and ka can be
quantitatively predicted from the solution of the Poisson-
Boltzmann equation (eq 12) as will be discussed in section
4.3. Empirically, it has been shown that this relation can be
described quite well by a Debye-Hückel-like approxi-
mation77,93

ln ka ) ln ka0 -
U0 ⁄ kBT

1+ κa
(23)

where U0 and a are fitting parameters. Comparison of eq 23
with eq 20 shows that U corresponds to the electrostatic
interaction energy of the transient complex at κ ) 0 (i.e., in
the absence of salt). According to eq 23, a plot of ln ka versus
(1 + κa)-1 is linear. The intercept of the line at (1 + κa)-1

) 0 is ln ka0, from which the basal rate constant ka0 can be
determined (Figure 7). The y value at (1 + κa)-1 ) 1 is ln
ka in the absence of salt, wherein the electrostatic attraction
is maximized.134 This linear relation was shown to hold for
the association of the TEM1-BLIP, interferon-receptor,
hirudin-thrombin, and barnase-barstar pairs and a het-
erodimericleucinezipperforallsaltconcentrationstested.93,129,135

Figure 7 clearly shows that electrostatic attraction may
be very strong at low salt. This phenomenon is well known
for proteins and the basis of ion-exchange purification. To
avoid strong, nonspecific electrostatic attraction the ionic
strength in the cell is ∼150 mM. At this ionic strength
charge-charge interactions are partially shielded, reducing
the negative effect of nonspecific interactions by allowing
for specific rate enhancement. A good example for this was
reported for the complex of barnase-barstar in the presence
of the poly ion hirudin.136 The association rate at low salt
was actually lower than in higher salt due to nonspecific
interactions of barnase with hirudin, which effectively
removed free barnase from the system. The rate peaked at
150-200 mM salt and slowed down at higher salt (this time
due to masking of the charges). Thus, the physiological ionic
strength is optimal to obtain fast specific binding yet reduce
nonspecific binding.

4.2. Probing the Contributions of Individual
Residues Toward ka by Mutation

Measuring the effects of mutations on the rate constants
of association is a powerful tool to decipher the mechanism
of association. As already discussed in section 3.2, extensive
site-directedmutagenesisofsurfaceresiduesoftheTEM1-BLIP,
barnase-barstar, interferon-receptor, growth-
hormone-receptor, IL4-receptor, and other protein pairs has
demonstrated that mutations involving charged residues have
the largest effect on ka, while mutations of uncharged resides
are much less important.6,93,107,108,135,137-141 This point is
further illustrated in Figure 8, which presents the analysis
on the effects on ka and kd by a set of 55 single mutations
located in the binding interfaces of the TEM1-BLIP,
barnase-barstar, and interferon-receptor pairs. Except for
the A19W mutation in interferon, none of the neutral
mutations had a large effect on ka, while many of them had
major effects on kd. This points toward a clear distinction
between the process of association and dissociation. Hotspot
residues affecting dissociation rates are both of charged and
uncharged nature, while hotspots for association are almost
always charged residues. Moreover, the energy gained or
lost though a mutation is of a different scale, while for ka it
is rare to find a residue that alters the rate by over 10-fold;
for kd it is common that >5 such residues are found within
an interface. While charge is important for association, the
magnitude of perturbation of ka is not simply a measure of
the change in charge but rather relates to the specific location
of the mutation and its contribution to the electrostatic energy
of interaction between the two proteins in the transient
complex (eq 20).1,13,77,93,94 For example, charged mutations
located far away from the binding interface will not affect
association even if these mutations are drastic.6

4.2.1. Altering Association Kinetics by Protein Design

As will be discussed in section 4.3, eq 20 allows for a
rigorous prediction of the association rate constant. The
prediction requires generation of the transient complex. For

Figure 7. Association rate constants of wild-type and mutant
TEM1-BLIP complexes determined at different salt concentrations
with ln ka plotted against (1 + κa)-1. The data can be fitted to a
line according to eq 23. Figure 8. Changes in the rate constants of (a) association and (b)

dissociation plotted against the change in charge resulting from a
mutation. The rate constants were measured for 55 mutations in
the barnase-barster, TEM1-BLIP, and IFNR2-IFNAR2 pairs.
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design purposes a simplified approach is called for. In the
simplified approach taken by Schreiber and co-workers the
electrostatic interaction energy 〈Uel〉* was calculated on the
native complex itself93,94

〈Uel 〉 * ≈ UC -UA -UB (24)

Here UX, X ) A, B, or C, refers to the electrostatic energy
of two proteins or their native complex given by

UX ) 1
2∑i,j

qiqj

εsrij

e-κ(rij-a)

1+ κa
(25)

where qi are the charges of the atoms in a protein or the
protein complex and rij are the distances between the charges.
The parameter a is the same as the one appearing in eq 23,
and a value of 5.6 Å was found experimentally to give the
best results in the calculations.93,94 Despite their simplicity
and the use of the native complex instead of the transient
complex, eqs 24 and 25 were shown to give good estimates
of electrostatic contributions to the rate constants of associa-
tion and of the way mutations will affect the rate constants
for diverse systems such as RNaseA-RI, AChE-fas,
TEM1-BLIP, hiruding-thrombin, CheY-CheA, Ras-Raf,
and Ras-Ral (Figure 5b).9,14,93,94,132,142 This was found to
be true whether mutations were placed within or outside the
binding interfaces. Most informative were the cases where
charged mutations were engineered outside the binding
interfaces of protein-protein complexes, such as for the
TEM1-BLIP and Ras-Ral pairs.14,93 In these cases, strong
increases in the rate constants of association were achieved
(250- and 17-fold, respectively), in agreement with the
calculated values. These increased ka values were however
not accompanied by a change in kd, leading to increased
association constants of the magnitudes described. This
observation has far-reaching implications for our understand-
ing of the transient complex and transition state for associa-
tion, as will be described below. It is important to note that
eqs 24 and 25 successfully predict the changes in association
rate constant also for mutations located within the binding
interfaces of protein-protein complexes, as shown for the
association of the barnase-barstar, TEM1-BLIP, Ras-Ral,
AChE-fas, hirudin-thrombin, CheY-CheA, and other
protein pairs.6,132

On the basis of eqs 24 and 25, two web servers for
calculating the changes in ka upon mutations were set up:
PARE (http://www.weizmann.ac.il/home/bcges/PARE.html)
and HyPare (http://bip.weizmann.ac.il/HyPare). The first
provides a more exact calculation for single mutations, while
the second provides a full analysis of the entire protein
surface, including the automated identification of “hotspots”
for association.94,143

According to eq 20, basal rate constants are the rate
constants of association in the absence of electrostatic
attraction. These can be calculated either by extrapolating
the values of ka to the limit of infinite salt concentration or
by introducing mutations that reduce the electrostatic interac-
tion energy to zero. From such calculations the basal rate
constants were found to be 4.4 × 104 or 4 × 104 M-1 s-1

for thrombin-hirudin association, 4.2 × 104 or 2.3 × 104

M-1 s-1 for TEM1-BLIP association, and 1.4 × 107 or 1.5
× 105 M-1 s-1 for barnase-barstar association (the two
values are extrapolated from mutant or salt data, respectively,
see Figure 7 and eq 23). Similarly, the values of ka0 were
6.6 × 105 M-1 s-1 for Ras-Raf association and 2 × 105

M-1 s-1 for AChE-fas association using mutation data.

Except for barnase-barstar association, the basal rate
constants were the same whether calculated from salt or
mutant data. The reason for the large difference between the
two methods in predicting the basal rate constant for
barnase-barstar association is currently not clear;143 possibly
this is an indication of the limitation of the simplification in
eqs 24 and 25 (see section 4.3 for further discussion).

It is important to note that eq 25 does not treat explicitly
the contributions of noncharged residues to ka. While indeed
the contributions are small, they were found to be significant
in a number of cases. For example, the A19W mutation on
IFNR2 reduced ka by 4-fold, a reduction that clearly relates
to conformational rearrangement during the process of
association (as verified using double-mutant cycle analysis
with the W100A mutation on IFNAR2).144 Another example
for conformational rearrangement rather than electrostatics
affecting association rates upon mutation was shown for
MICA (a major histocompatibility complex-like protein)
undergoing a structural transition from disorder to order upon
binding its immuno-receptor, NKG2D.145 In contrast, the rate-
limiting step for the human transcription factor pKID domain
of CREB, which also undergoes a folding transition upon
binding to the KIC domain of the coactivator CBP, appears
to be formation of a transient complex.146,147 Stabilizing the
structure of the pKID domain prior to binding does not
increase the association rate constant. Also, for complex
formation between fas and AChE, molecular dynamics
simulations suggested that fas undergoes a conformational
rearrangement during the binding to AChE, but the rear-
rangement does not appear to slow down the association
rate.148,149

4.2.2. Proteomics View of ‘Hotspots’ for Association

As discussed above, the association rate constant of a
protein complex depends on a basal rate constant and the
magnitude of electrostatic attraction, which can be calculated
in a simplified fashion from the structure of the native
complex. In an analysis on a database of 68 heterodimeric
complexes using HyPare it was found that in about one-half
of the complexes electrostatic contributions to the association
rate constants were small (<10-fold effects on ka); in one-
quarter of the complexes electrostatic attraction had a major
effect on ka (>100-fold increases). Defining a residue as a
hotspot for association if it changes ka by over 10-fold leaves
about one-half of the complexes without any potential hotspot
and a few hotspots per complex in the other complexes. Of
these putative hotspot residues, about 40% are calculated to
increase the rate of association upon mutation and thus
increase binding affinity. These data suggest that a majority
of protein-protein complexes are not optimized for fast
association. Moreover, about 40% of the hotspots for
association are located outside the binding interfaces, making
them ideal candidates for protein engineering to achieve
faster and tighter binding protein complexes. Hotspot residues
are not evenly distributed among the 20 types of amino acids.
About 75% of all hotspots are charged residues. This is
understandable as a charge-reversal mutant changes the total
charge by two. More intriguing is the small number of
hydrophobic residues that are hotspots, in comparison to
polar residues. For 18 out of the 68 complexes in the database
experimental values of ka were available, from which basal
rate constants were calculated to be in the range from 104 to
107 M-1 s-1. Some of these basal rate constants were
corroborated by both salt and mutant data (see above). The
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basal rate constants seem to correlate with the sizes of the
proteins and shapes of the interfaces (see the next section).

4.3. Prediction of Electrostatic Rate Enhancement
by the Transient-Complex Theory

Let us now discuss the rigorous prediction of the associa-
tion rate constant from the transient-complex theory. The
theory is given by eq 20 along with a structural model for
the ensemble of the transient complex, which is described
in section 3.1. Transient-complex theory offers two important
advantages. First, unlike in previous theoretical approaches
the model for the transient complex is based on rigorous
theoretical considerations and is uniquely defined. Second,
electrostatic interactions between two associating proteins
are treated directly by the Poisson-Boltzmann equation
without approximations.

Transient-complex theory was put to a comprehensive test
against experimental data4-6,128 for the association rate
constants of four protein pairs (shown in Figure 1) and 23
of their mutants over wide ranges of ionic strength.13 For
each protein pair 100 configurations were randomly selected
from the transient-complex ensemble to calculate the average
electrostatic interaction energy, 〈Uel〉*. Equation 20 was then
used to predict the association rate constant. As shown in
Figure 9a the ionic strength dependences of the association

rates for all four protein pairs are predicted well by the
transient-complex theory. Moreover, the predictions for 23
mutants at various ionic strengths agree closely with
experimental results (Figure 9b). In all there are 81 data
points in the latter comparison, spanning 4 orders of
magnitude in association rate. The theory thus appears to
fulfill the promise of having truly predictive power. It reveals
that among the protein pairs and their mutants studied the
basal rate ka0 can differ by ∼20-fold, but the bulk of the
variations in ka is due to the variations in 〈Uel〉*, which ranges
from 0 to -6 kcal/mol (the last value translates into a 104-
fold rate enhancement).

In the rigorous calculation of ka it was found that the same
basal rate constant, 1.4 × 106 M-1 s-1, explains both salt
and mutation data on barnase-barstar association. The
relatively high basal rate constant for the barnase-barstar
complex compared to other protein pairs is reproduced by
Brownian dynamics simulations.1,13 The variations of basal
rate constants among protein complexes can be explained
by the structures of the transient complexes. A higher ka0

value, as found for barnase-barstar association, corresponds
to a more open ensemble of the transient complex.1

The question of whether the predicted ka is sensitive to
the precise specification of the transient complex was also
addressed.13 As explained in section 3.1, the transient
complex is specified by the contact level, Nc*, at the onset
of a sharp increase in transltional/rotational freedom (Figure
3b). For the barnase-barstar complex the value of Nc* was
determined to be 14. The value of Nc* was artificially varied
from 10 to 18, and at each value ka0 and 〈Uel〉* were
calculated. When combined according to eq 20, the predicted
ka was found to vary little (<2-fold) due the opposite
dependences on Nc* of the two contributing factors, ka0 and
exp(-〈Uel〉*/kBT), to ka.

The comparison of theory against experimental data
presented above was based on calculating the electrostatic
interaction energy from the linearized Poisson-Boltzmann
equation (eq 12). It has been found that when the full
Poisson-Boltzmann equation (eq 11) was used, agreement
with experiment improved, albeit modestly.1 This underscores
the point that a rigorous treatment of electrostatic interactions
is essential for the accuracy of calculated ka.

For the binding between a protein and an RNA the
difference between the full Poisson-Boltzmann equation and
the linearized version is no longer modest because of the
large charge density on the nucleic acid. Then use of the
full Poisson-Boltzmann equation becomes a necessity.
Transient-complex theory has made it possible to realistically
model protein-RNA binding rate constants for the first
time.26 In that work the binding of the spliceosomal protein
U1A and its target on the U1 small nuclear RNA (Figure
10a) was studied. The binding and dissociation rate constants
of this and other protein-RNA systems exhibit the disparate
dependences on salt familiar to proteins,150-153 indicating that
the structural model for the transient complex developed for
protein-protein association is applicable to protein-RNA
binding. Representative configurations in the transient com-
plex of the U1 system are shown in Figure 10b. As Figure
11 shows, the binding rate constants of the wild-type system
and eight of its mutants are in close agreement with
experimental data.150,151

Comparison of predicted and experimental association
rates also helps settling an important technical detail in the
calculation of the electrostatic interaction energy. The detail

Figure 9. Comparison of predicted and experimental results for
association rate constants. (a) Ionic-strength dependences of four
protein pairs. (b) Twenty-three mutants at various ionic strengths.
(Reprinted with permission from ref 13. Copyright 2007 Elsevier.)
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in question is the definition of the boundary between the
protein low dielectric and solvent high dielectric. In many
Poisson-Boltzmann calculations this dielectric boundary is
specified by the molecular surface. An alternative choice is
the van der Waals surface.154,155 The difference between the
two surfaces lies in the many crevices accessible to a
spherical solvent probe, which are treated as part of the solute
dielectric in the molecular surface protocol but as part of
the solvent dielectric in the van der Waals surface protocol.
It is known that the sign of the electrostatic interaction energy
of two oppositely charged subunits can be reversed between
the two protocols, positive in the former and negative in the
latter.110,156-158

The results shown earlier for the average electrostatic
interaction energies in the transient complexes were all
obtained with the van der Waals surface protocol. With the
molecular surface protocol the same sign reversal mentioned
above was seen on 〈Uel〉*.1,26 Hence, electrostatic rate
enhancement now turned into rate retardation. For example,
for the barnase-barstar pair when the ionic strength was
varied from 13 to 2000 mM 〈Uel〉* calculated with the van

der Waals surface protocol varied from -3.30 to -0.82 kcal/
mol. Correspondingly, 〈Uel〉* calculated with the molecular
surface protocol varied from 2.50 to 5.13 kcal/mol. For the
latter results to be consistent with the experimental data for
the association rate constant would require a basal rate
constant in the order of 1010-1011 M-1s-1, which is clearly
unrealistic.

The transient-complex theory lays out a framework for
understanding the wide variation in association rate constants
(Figure 1) and elucidating the pathways of protein association
and dissociation. As documented above, the theory rational-
izes the insensitivity of kd to ionic strength and has achieved
great success in making quantitative predictions of ka for
association reactions where conformational rearrangements
are not rate limiting. However, quantitative calculations for
rate constants that involve formation or breakup of short-
range stereospecific interactions are beyond the scope of the
transient-complex theory.

5. Interaction Dynamics of Membrane-Anchored
Proteins

Key processes in the initiation of transmembrane signaling
involve ligand-induced interactions between receptor pro-
teins, which are anchored to the membrane. Compared to
interaction kinetics in solution, anchoring of proteins into
the membrane dramatically changes the mobility of the
interaction partners both in terms of diffusion constants
(which are reduced by 2 orders of magnitude) and in
restricting the movements to two dimensions (thus actually
making the mutual search problem simpler). In general,
reduction in dimensionality as well as potentially favorable
preorientation has been proposed to explain the rapid
initiation of signaling.37,159-161 However, few quantitative

Figure 10. U1 protein-RNA system. (a) The native complex. (b)
Representative configurations in the transient complex. The U1A
protein is represented by the electrostatic surface. Notice that the
RNA is moved away from the protein in the transient complex.
(Reprinted with permission from ref 26. Copyright 2008 American
Chemical Society.)

Figure 11. Comparison of predicted and experimental results for
the binding rates of the wild-type U1 system and eight of its
mutants. Locations of the mutated residues are shown in the inset.
(Reprinted with permission from ref 26. Copyright 2008 American
Chemical Society.)
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experimental studies of 2-dimensional protein interactions
have been reported. For IL-4-induced cross-linking of the
IL-4 RR with the common γ chain on live cells a surprisingly
low efficiency of association of the low-affinity γ-chain
subunit with the highly stable complex of IL-4 and IL-4 RR
on the membrane was observed.162 Recent systematic studies
of ternary cytokine-receptor complexes tethered on artificial
membranes have provided some quantitative understanding
of 2-dimensional interactions. These data confirmed the
regulatory role of binding affinities for complex formation
on membranes. Equilibrium dissociation constants on the
order of 1-10 µM for the interaction in solution yielded
2-dimensional equilibrium dissociation constants on the order
of 10-100 molecules/µm2.163 Kinetic analysis of such
complexes revealed that the probability of successful colli-
sions is indeed higher on membranes, which can be ascribed
to the preorientation and longer lifetime of the transient
complex. This effect is, however, largely compensated by
the decreased diffusion rate, which reduces the number of
collisions on the same order of magnitude. The orientation
of the proteins significantly affects the rate constants of
association,164 though protein domains interacting outside the
membrane are often rather flexible. Overall, the association
rates at a given average distance of the molecules in solution
and on the surface are surprisingly similar.165 In the dis-
sociation process separation of the interacting species by
diffusion plays a critical role. This agrees with the notion
that the association kinetics is highly diffusion controlled.
As a consequence, local membrane fluidity in membrane
microdomains may play a critical role for stabilizing
membrane protein complexes. Thus, the energy landscapes
of cellular membrane protein complexes are highly influenced
by the microcompartmentalization of the membranes. Crowd-
ing by by-stander proteins in the membranes may also have
a significant effect (cf. section 6).

Single-molecule fluorescence techniques may contribute
to the study of association within membranes. The process
of dimerization of epidermal growth factor receptors (EGFR)
in cellular membranes and binding of their substrate,
epidermal growth factor (EGF), was studied recently using
single-molecule fluorescence.166 Fluorescent EGF molecules
bound to EGFR molecules were tracked. Association of a
second EGF molecule to a preformed EGF-EGFR complex
was seen as a sudden doubling of the fluorescence intensity.
It was concluded that EGFR dimerization preceded binding
of a second EGF molecule to a complex. The kinetics of the
dimerization process itself, however, is yet to be studied.

6. Roles of the Depletion Effect and Crowding in
Association Kinetics

Since protein-protein association mostly takes place
within cells it is important to understand the particular
properties of the cellular environment which may have a
profound effect on such reactions.167 Most importantly, the
cytoplasm of cells is a dense solution of macromolecules of
many sizes and shapes. In fact, macromolecules may occupy
as much as 40% of the total intracellular volume.168 These
“crowding agents”, as they are sometimes called, include
mostly folded proteins and nucleic acids. Structural proteins
form dynamic networks of filaments, creating the cytoskel-
eton and thus dividing the cell into discrete bulk areas of
cytoplasm, where soluble proteins can interact. In addition,
there are many ‘natively unfolded proteins’ whose random-

coil-like conformations can add complexity to the cytoplas-
mic milieu.169

There are two major outcomes of the high intracellular
concentration of macromolecules in their various forms. First,
the macroscopic viscosity of the cytoplasm is significantly
higher than the viscosity of a dilute aqueous solution. This
higher viscosity should affect long-range translational dif-
fusion of proteins. On small length scales there should be a
large heterogeneity in the density of macromolecules, leading
to microscopic viscosity, which depends strongly on position.
The crowded cytoplasm may also affect rotational motion
of proteins, which is also crucial for protein-protein
association. Since rotational diffusion is by nature more local
than translational diffusion and occurs on faster time scales,
it is likely to be affected differently by the crowded
cytoplasm.170,171 A second effect of the crowded cytoplasmic
solution is depletion, which can be seen as an effective
osmotic pressure exerted on all diffusing molecules. This
phenomenon, which is entropic in nature, is due to the fact
that protein solutes exclude (or deplete) some of the solution
volume from other solutes. These effects are the subjects of
the following sections.

6.1. Translational and Rotational Diffusion of
Proteins in Concentrated Solutions and Cells

Dense macromolecular solutions should be discussed more
appropriately in terms of their viscoelasticity rather than their
viscosity.172 Viscoeleastic solutions possess time-scale- and
length-scale-dependent viscosity. The effective viscosity
sensed by a tracer molecule undergoing fast, short-range
motion is therefore different than that sensed by a particle
moving slowly over large distances. Further, the cytoplasmic
environment is not homogeneous, and the density of mac-
romolecules and other intracellular components may vary
from one spot to another within the cell. Thus, diffusion times
may scale with distance in an unexpected way. Recent
experiments have probed the viscoelasticity of cellular
interiors using microrheology techniques (for reviews see
refs 173 and 174). Of most interest to the present review
are experiments that directly measure diffusion coefficients
inside cells or in complex solutions that may mimic the
cytoplasm.

A useful probe for studying translational and rotational
diffusion inside cells is green fluorescent protein (GFP),
which can be expressed alone or in tandem with other
proteins. Verkman and co-workers used GFP and GFP-
labeled proteins to study diffusion in the cytoplasm170 and
inside mitochondria.175 They found that translational diffusion
is more retarded than rotational diffusion, an observation
which is in line with studies in model solutions described
below. Particles larger than the ∼28 kDa GFP may show an
even more complex behavior. Golding and Cox176 studied a
complex of ∼100 nm in size formed by a mRNA molecule
with a large number of GFP-labeled proteins. The slow
motion of this complex allowed the tracking of individual
copies using time-lapse microphotography. The complex
exhibited anomalous subdiffusive behavior with a mean-
squared displacement proportional to tR, where t is the time
and R ≈ 0.7. This behavior suggests that the molecules are
hindered in their motion, perhaps due to transient interactions
with other components of the cell. Fluorescence correlation
spectroscopy (FCS) of dextran molecules in cytoplasms also
showed anomalous subdiffusion.177
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To gain a broader view of diffusion in cell-like environ-
ments it is useful to conduct experiments in solutions of
polymers in which the composition and concentration of
cosolutes can be systematically changed.178 Motion of
proteins in solutions of large polymers is expected to be
subdiffusive, and this behavior has been observed by Banks
and Fradin,179 who used FCS to study the motion of tracer
proteins in solutions of dextran molecules of various sizes.
Diffusion became more anomalous as the size of the polymer
molecules and their concentration increased. This behavior
was seen even in solutions of the smaller dextrans with
molecular weights < 10 kDa. In contrast, in a study of
diffusion of proteins in polyethylene glycol (PEG) solutions
of molecular weights up to 8000 by FCS it was found that
normal diffusion (i.e., mean-squared displacement linear with
time) could well account for the data.180 It is likely that the
size of the crowding agents relative to the tracer protein size
is the key parameter that determines the functional depen-
dence of diffusive motion on time.

The relation of diffusion coefficients to viscosity can be
another useful indicator of the degree of retardation of
diffusive motion by polymeric solutions. The translational
diffusion coefficients of small proteins in PEG solutions of
molecular weights up to 8000 obeyed the Stokes-Einstein
relation, i.e., in inverse proportion to solution macroscopic
viscosity.180 In stark contrast, rotational diffusion correlation
times in the same solution were not proportional to macro-
scopic viscosity,180 in agreement with other experiments.181

The results for diffusion in PEG8000 are shown in Figure
12. Rotational motion occurs on a much faster time scale
than translational motion, and therefore, rotation probes only
the local viscosity at the position of a protein molecule, which
experiences rather little friction from the polymer molecules
themselves. This effect of microviscosity on protein rotational
motion has a strong impact on protein-protein association
in polymer solutions, as will be seen below.

6.2. Depletion Effect
The interaction between solutes in a concentrated solution

can be understood within the framework of the classical
McMillan-Mayer theory of multicomponent systems.182 In
the simplest form of this theory solute molecules are
represented as hard spheres that cannot penetrate each other,
but there is no direct interaction between them when they

are separated. Their interactions and reaction equilibria, as
they are modified due to the excluded volume effects of other
solutes, can then be calculated.183 Asakura and Oosawa
realized, in a terse letter to the Journal of Chemical Physics
written in 1954,184 that the excluded volume effect on two
particles immersed in a macromolecular solution can be cast
in terms of an effective distance-dependent attractive poten-
tial, which is operating when their distance is smaller than
the size of a macromolecule. This attractive potential185 can
be readily attributed to the inability of the macromolecular
solute molecules to enter the region between the two particles
(Figure 13). This region is said to be ‘depleted’ of solute
molecules; hence, the name ‘depletion effect’ given to this
phenomenon. The depletion potential, entropic in nature, will
prove useful for calculating the effect of polymer cosolutes
on protein-protein association kinetics (section 6.3).

The depletion effect is similar to the situation occurring
in an osmotic pressure experiment, where a semipermeable
membrane precludes macromolecular solutes from entering
one region of the solution. In that Asakura and Oosawa (AO)
theory the depletion potential is indeed proportional to the
osmotic pressure of the solution as well as to the depleted
volume. The AO theory is formally correct only in the colloid

Figure 12. Protein translational and rotational correlation times
in solutions of PEG of MW 8000, plotted as a function of solution
viscosity. Translational correlation times (red circles) were measured
by fluorescence correlation spectroscopy, while rotational correlation
times (green circles) were measured by fluorescence polarization
spectroscopy. All plotted values are normalized by water values.
(Reprinted with permission from ref 180. Copyright 2008 American
Chemical Society.)

Figure 13. Depletion effect. (a) An osmotic pressure is exerted
on two particles (proteins) immersed in a macromolecular solution
when their separation does not allow the solute macromolecules to
penetrate the volume between them. (b) This entropic effect is
minimal when the two particles are in contact (e.g., when two
proteins associate).
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limit, when the macromolecules exerting the depletion force
are much smaller than the particles feeling it.186 It also does
not take into account the polymeric nature of macromolecular
solutions, modeling the macromolecules as hard spheres.
Schweizer and co-workers187,188 developed an integral equa-
tion theory, called the Polymer Reference Interaction Site
Model (PRISM), which attempts to properly treat macro-
molecular solutions and is also applicable beyond the colloid
limit.

The excluded-volume interactions underlying the depletion
potential manifest themselves in many equilibrium pro-
cesses.183 Indeed, precipitation and crystallization of proteins
by polymeric additives have been studied for many years.189

Minton and co-workers developed a sedimentation equilib-
rium method190 to study excluded volume-driven association
between proteins. In particular, inert proteins, acting as
crowders, were shown to promote specific self-association
of the cell division protein FtsZ into rod-like oligomers.191

Theoretically, equilibrium effects of excluded-volume
interactions on a solution of proteins can be quantified
through the second virial coefficient, B2, which is related to
the depletion potential, U(r), via

B2 ) 2π∫0

∞
r2(1- exp[U(r) ⁄ kBT]dr (26)

The effect of crowding and depletion on the second virial
coefficient of protein solutions was directly probed by
scattering experiments.192-195 Kulkarni et al. performed a
series of experiments on the proteins lysozyme and bovine
serum albumin in PEG solutions of several molecular
weights.193 The dependence of B2 on polymer concentration
was extracted and compared to models in order to understand
nonspecific, solute-induced interactions between protein
molecules. Since PEG is a flexible polymer, the AO theory
of depletion did not describe the results well. It was found
that the PRISM theory, which takes into account the
flexibility of polymer, accounts better for the experimental
results (Figure 14). Vivares et al. extracted the full U(r) from
small-angle X-ray scattering experiments of urate oxidase
in PEG solutions.195 By comparison to several models they
also reached the conclusion that PEG-induced depletion has
to be described by models that take into account its polymeric
nature.

6.3. Crowding and Protein-Protein Association
Kinetics

The kinetics of protein-protein association in a crowded
environment may be affected by both effects discussed
above.196 First, the increase in solution viscosity should slow
down diffusion, which is what brings two associating proteins
toward their transient complex. Since translational and
rotational diffusion may be differently affected by the
presence of macromolecules (as discussed in section 6.2),
modeling the viscosity effect on association rates may not
be trivial. Second, the effective attraction induced by the
depletion interaction may affect not only the equilibrium of
protein solutions but also the kinetics of their interactions.
Just as an electrostatic potential enhances the association rate
(see sections 1.1 and 4), so is the depletion potential expected
to speed up association. When two protein molecules are
close enough to each other, the osmotic pressure exerted by
macromolecular cosolutes should lead to a significant
increase in the probability of reaching the transient complex.
A simple albeit approximate description of the effect of
depletion on association kinetics can be obtained using eq
17, where now 〈U〉* is interpreted as the average depletion
interaction potential in the transient complex in which the
two proteins are essentially at contact. Illustrative calculations
in ref 196 show that when the effect of slowed down
diffusion and the contribution of the attractive depletion
potential are combined “cancellation of the two opposing
effects leaves a modest overall effect of crowding on the
binding rate”.

Several studies of protein-protein association kinetics in
macromolecular solutions have been published.197-199 The
common denominator of all these experiments is that the
effect of polymers on association kinetics is small, which,
as just noted, is precisely what is predicted by theory.196 The
first experimental evidence for the underlying reason in that
prediction was obtained in a recent study in which the
association rate was dissected into its various components.180

This study is discussed next.

6.3.1. Case of TEM-BLIP

The association kinetics of the protein TEM1-�-lactamase
(TEM1) and its protein inhibitor BLIP was studied in
macromolecular solution in an attempt to mimic the crowded
intracellular milieu and systematically probe its effects on
the process. A stopped-flow apparatus was used to measure
the millisecond kinetics of association of these proteins in
solutions of polyethylene glycol molecules of various mo-
lecular weights from 200 to 8000 (designated as PEG200,
PEG8000, etc.).198 Measuring the translational and rotational
diffusion coefficients in some of these solutions180 allowed
the use of eq 8 to provide an estimate for the change in the
association rate constant due to changes in the diffusion
coefficients. The reader is reminded that in this equation the
association rate constant depends on both translational and
rotational diffusion coefficients. If the diffusion coefficients
both obey the Stokes-Einstein relations, i.e., are inversely
proportional to solution viscosity, then eq 8 predicts that the
association rates will also be inversely proportional to
viscosity. A much weaker dependence on viscosity was seen
in the experiments.180,198

It is useful to describe here the PEG8000 results, which
were particularly clear and striking. When plotted as a
function of viscosity the association times (inverse rates) in

Figure 14. B2 (normalized by the hard-sphere value) for lysozyme
and BSA as a function of concentration (wt %) of PEG of molecular
weight 12 000. The dotted and solid lines are AO and PRISM
predictions, respectively. (Adapted with permission from ref 193.
Copyright 2000 American Institute of Physics.)
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PEG8000 solutions are much faster than the SE prediction
and in fact seem to saturate and remain essentially constant
above a relative viscosity value of ∼5 (Figure 15A, green
squares). This result seems to be in accord with the
measurement of rotational diffusion times of the proteins in
PEG8000 solutions, which also shows a saturating behavior
(Figure 12). However, translational diffusion times obey the
SE relation well, and when the various diffusion times are
inserted into eq 8 the predicted association times are found
to be too large (Figure 15A, red squares). The significant
enhancement of association in PEG8000 solutions can be
attributed to depletion, i.e., to the effective attraction induced
by the polymer solution on the two proteins. Equation 17
can be used to estimate the interaction potential due to the
depletion effect as a function of polymer concentration. This
results in the depletion-induced interaction potential being
linear with concentration (Figure 15B) in line with the AO
theory. In other words, the depletion effect on association
time is exponential in the polymer concentration. However,
calculations using eq 17 show that the effect is significantly
weaker than predicted by the AO theory, suggesting that the
geometric considerations used to derive the depletion po-
tential in that theory might be oversimplified. This is not
surprising since PEG8000 molecules cannot be treated as
spheres, certainly not at the concentrations used in the
experiment. On the other hand, these results cannot be
explained by the PRISM theory of Schweitzer and co-
workers187,188 either, which predicts a linear dependence of
the depletion effect on concentration rather than an expo-
nential dependence. Further theoretical analysis is thus
required in order to fully rationalize the experimental
findings.

The biological implications of the above results are quite
interesting. Over a rather broad range of polymer concentra-
tions the rate of association between proteins is likely to be
only mildly affected by the large abundance of other
macromolecules. This is due to the ‘corrective’ effect of the
depletion interaction, which enhances association much
beyond the diffusion-limited rate.196

6.3.2. Surprises in Concentrated Solutions

When the concentration of macromolecules in solution is
so large that the polymer solution correlation length becomes
comparable to the size of a monomer an interesting regime
is approached. In this regime monomers from one chain
interact with monomers on other chains in the same manner
as they interact with themselves. This leads to an effective

loss of the excluded volume interaction on internal statistics
of polymer molecules, and the statistics become those of ideal
chains.200 The effect of concentrated macromolecular solu-
tions on association reactions of solute proteins should be
similar to the effect in concentrated solutions of the relevant
monomers.

Studying the effect of concentrated macromolecular solu-
tions on the kinetics of the TEM1-BLIP association reaction
turned out to be problematic for larger polymers, e.g.,
PEG8000, due to the excessively high viscosity. Neverthe-
less, it was possible to study association in concentrated
solutions of smaller polymers, e.g., PEG1000.201 It was found
that above a certain critical concentration of the polymer a
dramatic increase in association times occurred. Quite
satisfactorily, the dependence of the change in association
times in this phase on polymer concentration was rather
similar to the dependence of association times on concentra-
tion in solutions of the monomeric ethylene glycol.201 This
observation matches the physics of concentrated polymer
solutions as described above. It is possible that in cellular
environments a continuous change of the crowding effect,
induced by changes in concentrations of proteins and other
macromolecules, may strongly modulate association kinetics.

7. Conclusions
The association of proteins to form a complex is a

multistep process, which starts by random collisions of the
individual proteins. Multiple collisions and rotational diffu-
sion brings the proteins to an orientation that is close to that
of the native complex, leading to formation of a transient
complex. This part of the process is diffusion controlled and
strongly affected by electrostatic interactions. An open
question is whether the transient complex develops into the
native complex through a transition state or complex forma-
tion is a simple downhill transformation of the transient
complex. In section 1.2 theoretical models are used to
describe association as a diffusion-limited process, which is
slowed down from the Smoluchowski limit due to orienta-
tional constraints satisfied by a stereospecific native complex.
On the other hand, in section 3.2 experimental evidence is
presented to show that the transient complex will likely
dissociate and that the transition state for association is
related to short-range conformational rearrangement and
desolvation, processes that slow the conversion from the
transient complex to the native complex. However, structur-
ally the transient complex and transition state seem to be
similar.

Figure 15. Effect of PEG8000 on association times of the TEM1-BLIP protein pair. (a) Measured association times (relative to water,
green squares) and association times calculated from translational and rotational diffusion coefficients (red squares) as a function of relative
viscosity. The black line is the Stokes-Einstein prediction. (b) Depletion energies obtained from the difference between measured and
calculated association times are plotted as a function of polymer concentration. (Reprinted with permission from ref 180. Copyright 2008
American Chemical Society.)
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